Corentin Noël
August 03, 2018
Reading time:
GNOME Builder is an Integrated Development Environment designed for the GNOME ecosystem. It most notably features a deep integration to the Git version control system, allow to debug applications quickly using the GNU Debugger and allow in-line documentation viewing using Gtk-Doc.
By being very powerful and versatile, GNOME Builder is starting to take a prominent place in the IDE world. But many developers building GNOME applications for an embedded platform need an IDE that handles the very specific requirements of embedded systems development.
Developing applications for embedded devices has always required lots of extra work or required some platform-specific tools that do not fit the assumptions made by GNOME Builder.
To fulfill the specific needs of the embedded devices, I had to split my work in two steps: allow to specify a sysroot (added with a plugin in GNOME Builder) and adding the support of the cross-compilers (which required some internal changes).
Developing for a different device than the one you are currently using often mean that you will use a libraries with different version than your system, or that you'll even use different libraries that are not necessary available on your system.
For this very specific reasons, developer are often provided a copy of the system root directory of the targeted device.
By default, any build system, being Autotools, CMake or Meson, try to provide the dependencies from the standard directory of your system. There is an option in most compiler named --sysroot that, when used, allow the components to be found relatively to this different system root directory.
As most modern libraries make use of pkg-config to declare their dependencies and build flags, it is also important to ensure that this tool respects the given root directory.
To automate these tasks in GNOME Builder, a new module has been created named "Sysroot". It allows you to define very quickly your targeted system following a few simple steps.
Once created, the sysroot will then be available in the Runtime section of your project configuration. You'll be able to build your application using the sysroot by just clicking on the build button.
We are now able to compile a software using different libraries than the one provided by the system. But this change targets a really limited scope as it is only really working when compiling for the very same architecture.
Let's now imagine that the build machine (the one compiling the application) has a different architecture from the host machine (the one running the generated application). We then need to use a cross-compiler to properly generate the binaries for a specific architecture.
Most if not all modern GNU/Linux distribution has packages to install the cross-compiler targeting a large set of architectures, and very specific architectures often comes with a cross-compiler made by the vendor.
The development version 3.29.2 of GNOME Builder introduced the concept of Toolchain: as a set of tools used to compile a software and is expected to be available in the stable version 3.30 to be released in a few months.
GNOME Builder has embedded support of toolchain autodetection; detecting the cross-compiler installed in the standard locations in your system, parsing the cross-compilation files for Meson in well-defined system and user directories, and also in the project directory for Meson and CMake. A defined sysroot leading to a Yocto root directory should also be able to provide the toolchain installed with the SDK aside.
And as GNOME Builder already has support of running applications using QEMU, It is now possible to build and run a cross-compiled GTK+ application directly from the GUI.
A virtual machine image is available here (3.6 GB).
The virtual image above already contains everything you need to test. If you prefer to make the image yourself, here are a few steps to reproduce it:
flatpak install https://gitlab.gnome.org/GNOME/gnome-apps-nightly/raw/master/gnome-builder.flatpakref
) Install a cross-compiler using your favorite package manager (for instance sudo apt install gcc-arm-linux-gnueabihf
)~/sysroot
)Preferences
→ SDKs
and add a new sysroot by clicking on the +
button in the Sysroots
section, fill the popover according to your configuration.clone… button and clone the sample project https://gitlab.collabora.com/tintou/gnome-builder-sample-app.git
aarch64-poky-linux.crossgen
) for instance that you'll need to adapt to your configuration.Configure build preferences
button then select the default profile on the left column, then your previously configured Sysroot and Toolchain (the sysroot is under the runtime section). When you change the sysroot, be careful to also use the corresponding toolchain.clean
then build
. You can click on the run button to test the application.Shoutouts to Christian Hergert for his very effective reviews and his time spend on merging these changes to GNOME Builder.
Big thanks to Guillaume Tucker for mentoring me during this internship and to Gustavo Noronha for initiating the task on Collabora's R&D department.
15/01/2025
With VirGL, Venus, and vDRM, virglrenderer offers three different approaches to obtain access to accelerated GFX in a virtual machine. Here…
19/12/2024
In the world of deep learning optimization, two powerful tools stand out: torch.compile, PyTorch’s just-in-time (JIT) compiler, and NVIDIA’s…
08/10/2024
Having multiple developers work on pre-merge testing distributes the process and ensures that every contribution is rigorously tested before…
15/08/2024
After rigorous debugging, a new unit testing framework was added to the backend compiler for NVK. This is a walkthrough of the steps taken…
01/08/2024
We're reflecting on the steps taken as we continually seek to improve Linux kernel integration. This will include more detail about the…
27/06/2024
With each board running a mainline-first Linux software stack and tested in a CI loop with the LAVA test framework, the Farm showcased Collabora's…
Comments (0)
Add a Comment